Part Number Hot Search : 
LD1016SK C431N1 MC330 CX162 SPU23N05 BAS23W AN673 CYRF7936
Product Description
Full Text Search
 

To Download CPV363MM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c-417 CPV363MM short circuit rated fast igbt igbt sip module parameter typ. max. units r q jc (igbt) junction-to-case, each igbt, one igbt in conduction ? 3.5 r q jc (diode) junction-to-case, each diode, one diode in conduction ? 5.5 c/w r q cs (module) case-to-sink, flat, greased surface 0.1 ? wt weight of module 20 (0.7) ? g (oz) thermal resistance features ? short circuit rated - 10s @ 125c, v ge = 15v ? fully isolated printed circuit board mount package ? switching-loss rating includes all "tail" losses ? hexfred tm soft ultrafast diodes ? optimized for medium operating frequency (1 to 10khz) see fig. 1 for current vs. frequency curve product summary output current in a typical 5.0 khz motor drive 7.65 a rms per phase (2.4 kw total) with t c = 90c, t j = 125c, supply voltage 360vdc, power factor 0.8, modulation depth 80% (see figure 1) 3 6 7 13 19 18 15 10 16 4 9 12 d1 d3 d5 d2 d4 d6 q1 q2 q3 q4 q5 q6 1 ? the igbt technology is the key to international rectifier's advanced line of ims (insulated metal substrate) power modules. these modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power mosfet. this superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. this package is highly suited to power applications and where space is at a premium. these new short circuit rated devices are especially suited for motor control and other totem-pole applications requiring short circuit withstand capability. description absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current, each igbt 13 i c @ t c = 100c continuous collector current, each igbt 7.0 i cm pulsed collector current 26 a i lm clamped inductive load current 26 i f @ t c = 100c diode continuous forward current 6.1 i fm diode maximum forward current 26 t sc short circuit withstand time 10 s v ge gate-to-emitter voltage 20 v v isol isolation voltage, any terminal to case, 1 min. 2500 v rms p d @ t c = 25c maximum power dissipation, each igbt 36 w p d @ t c = 100c maximum power dissipation, each igbt 14 t j operating junction and -40 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 5-7 lbf?in (0.55 - 0.8 n?m) ims-2 revision 2
c-418 CPV363MM parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 600 ? ? v v ge = 0v, i c = 250a d v (br)ces / d t j temperature coeff. of breakdown voltage ? 0.68 ? v/c v ge = 0v , i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ? 1.6 2.4 i c = 7.0a v ge = 15v ? 2.0 ? v i c = 13a see fig. 2, 5 ? 1.7 ? i c = 7.0a, t j = 150c v ge(th) gate threshold voltage 3.0 ? 5.5 v ce = v ge , i c = 250a d v ge(th) / d t j temperature coeff. of threshold voltage ? -13 ? mv/c v ce = v ge , i c = 250a g fe forward transconductance 3.2 6.3 ? s v ce = 100v, i c = 14a i ces zero gate voltage collector current ? ? 250 a v ge = 0v, v ce = 600v ? ? 2500 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop ? 1.4 1.7 v i c = 12a see fig. 13 ? 1.3 1.6 i c = 12a, t j = 150c i ges gate-to-emitter leakage current ? ? 500 na v ge = 20v electrical characteristics @ t j = 25c (unless otherwise specified) repetitive rating; v ge =20v, pulse width limited by max. junction temperature. ( see fig. 20) notes: pulse width 5.0s, single shot. v cc =80%(v ces ), v ge =20v, l=10h, r g = 23 w , ( see fig. 19 ) pulse width 80s; duty factor 0.1%. parameter min. typ. max. units conditions q g total gate charge (turn-on) ? 32 49 i c = 14a q ge gate - emitter charge (turn-on) ? 6.7 10 nc v cc = 400v q gc gate - collector charge (turn-on) ? 13 21 see fig. 8 t d(on) turn-on delay time ? 64 ? t j = 25c t r rise time ? 29 ? ns i c = 7.0a, v cc = 480v t d(off) turn-off delay time ? 340 500 v ge = 15v, r g = 23 w t f fall time ? 240 350 energy losses include "tail" and e on turn-on switching loss ? 0.28 ? diode reverse recovery. e off turn-off switching loss ? 0.70 ? mj see fig. 9, 10, 11, 18 e ts total switching loss ? 0.98 1.5 t sc short circuit withstand time 10 ? ? s v cc = 360v, t j = 125c v ge = 15v, r g = 23 w , v cpk < 500v t d(on) turn-on delay time ? 62 ? t j = 150c, see fig. 9, 10, 11, 18 t r rise time ? 28 ? ns i c = 7.0a, v cc = 480v t d(off) turn-off delay time ? 620 ? v ge = 15v, r g = 23 w t f fall time ? 420 ? energy losses include "tail" and e ts total switching loss ? 1.8 ? mj diode reverse recovery. c ies input capacitance ? 750 ? v ge = 0v c oes output capacitance ? 100 ? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ? 9.3 ? ? = 1.0mhz t rr diode reverse recovery time ? 42 60 ns t j = 25c see fig. ? 80 120 t j = 125c 14 i f = 12a i rr diode peak reverse recovery current ? 3.5 6.0 a t j = 25c see fig. ? 5.6 10 t j = 125c 15 v r = 200v q rr diode reverse recovery charge ? 80 180 nc t j = 25c see fig. ? 220 600 t j = 125c 16 di/dt = 200a/s di (rec)m /dt diode peak rate of fall of recovery ? 180 ? a/s t j = 25c see fig. during t b ? 120 ? t j = 125c 17 switching characteristics @ t j = 25c (unless otherwise specified)
c-419 fig. 1 - rms current and output power, synthesized sine wave fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics CPV363MM 0 2 4 6 8 10 0.1 1 10 100 f , f r e q u e n c y ( k h z ) l o a d c u r r e n t ( a ) t o t a l o u t p u t p o w e r ( k w ) 0 t = 9 0 c t = 1 2 5 c p o w e r f a c t o r = 0 . 8 m o d u l a t i o n d e p t h = 0 . 8 v = 6 0 % o f r a t e d v o l t a g e c j c c 3 . 1 2 . 5 1 . 9 1 . 2 0 . 6 1 10 100 5 10 15 20 c i , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) g e t = 2 5 c t = 1 5 0 c j j v = 1 0 0 v 5 s p u l s e w i d t h ? c c v , g a t e - t o - e m i t t e r v o l t a g e ( v ) a 0.1 1 10 100 0.1 1 10 c e c i , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) v , c o l l e c t o r - t o - e m i t t e r v o l t a g e ( v ) t = 1 5 0 c t = 2 5 c j j v = 1 5 v 2 0 s p u l s e w i d t h ? g e a
c-420 fig. 5 - collector-to-emitter voltage vs. case temperature fig. 4 - maximum collector current vs. case temperature CPV363MM fig. 6 - maximum igbt effective transient thermal impedance, junction-to-case 1.0 1.4 1.8 2.2 2.6 3.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 c c e v , c o l l e c t o r - t o - e m i t t e r v o l t a g e ( v ) ? v = 1 5 v ? 8 0 s p u l s e w i d t h g e t , c a s e t e m p e r a t u r e ( c ) a i = 1 4 a i = 7 . 0 a i = 3 . 5 a c c c 0 3 6 9 12 15 25 50 75 100 125 150 m a x i m u m d c c o l l e c t o r c u r r e n t ( a ) t , c a s e t e m p e r a t u r e ( c ) c v = 1 5 v ? g e a 0 . 0 1 0 . 1 1 1 0 0 . 0 0 0 0 1 0 . 0 0 0 1 0 . 0 0 1 0 . 0 1 0 . 1 1 1 0 t , r e c t a n g u l a r p u l s e d u r a t i o n ( s e c ) 1 t h j c d = 0 . 5 0 0 . 0 1 0 . 0 2 0 . 0 5 0 . 1 0 0 . 2 0 s i n g l e p u l s e ( t h e r m a l r e s p o n s e ) t h e r m a l r e s p o n s e ( z ) p t 2 1 t d m n o t e s : ? 1 . d u t y f a c t o r d = t / t 2 . p e a k t = p x z + t ? ? ? ? 1 2 j d m t h j c c ? ? ?
c-421 CPV363MM fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. case temperature 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 0 10 20 30 40 50 60 g t o t a l s w i t c h i n g l o s s e s ( m j ) r , g a t e r e s i s t a n c e ( w ) a ? v = 4 8 0 v ? v = 1 5 v ? t = 2 5 c ? i = 7 . 0 a c c g e c c 0.1 1 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 c t , c a s e t e m p e r a t u r e ( c ) t o t a l s w i t c h i n g l o s s e s ( m j ) a r = 2 3 w v = 1 5 v v = 4 8 0 v g g e c c i = 1 4 a i = 7 . 0 a i = 3 . 5 a c c c 0 200 400 600 800 1000 1200 1400 1 10 100 c e c , c a p a c i t a n c e ( p f ) v , c o l l e c t o r - t o - e m i t t e r v o l t a g e ( v ) a v = 0 v , f = 1 m h z c = c + c , c s h o r t e d c = c c = c + c g e i e s g e g c c e r e s g c o e s c e g c c ? i e s c ? r e s c ? o e s 0 4 8 12 16 20 0 10 20 30 40 g e v , g a t e - t o - e m i t t e r v o l t a g e ( v ) g q , t o t a l g a t e c h a r g e ( n c ) a ? v = 4 0 0 v ? i = 1 6 a c e c
c-422 fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current CPV363MM 0.0 1.0 2.0 3.0 4.0 0 3 6 9 12 15 c t o t a l s w i t c h i n g l o s s e s ( m j ) i , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) a ? r = 2 3 w ? t = 1 5 0 c ? v = 4 8 0 v ? v ? = 1 5 v g c c c g e 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 f m f i n s t a n t a n e o u s f o r w a r d c u r r e n t - i ( a ) f o r w a r d v o l t a g e d r o p - v ( v ) t = 1 5 0 c t = 1 2 5 c t = 2 5 c j j j 1 10 100 1 10 100 1000 c c e i , c o l l e c t o r - t o - e m i t t e r c u r r e n t ( a ) s a f e o p e r a t i n g a r e a ? ? v = 2 0 v ? t = 1 2 5 c g e j v , c o l l e c t o r - t o - e m i t t e r v o l t a g e ( v ) a
c-423 CPV363MM fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 200 400 600 100 1000 f d i / d t - ( a / s ) r r q - ( n c ) i = 6 . 0 a i = 1 2 a i = 2 4 a v = 2 0 0 v t = 1 2 5 c t = 2 5 c r j j f f f 10 100 1000 10000 100 1000 f d i / d t - ( a / s ) d i ( r e c ) m / d t - ( a / s ) i = 1 2 a i = 2 4 a i = 6 . 0 a f f f v = 2 0 0 v t = 1 2 5 c t = 2 5 c r j j 0 40 80 120 160 100 1000 f d i / d t - ( a / s ) t - ( n s ) r r i = 2 4 a i = 1 2 a i = 6 . 0 a f f f v = 2 0 0 v t = 1 2 5 c t = 2 5 c r j j 1 10 100 100 1000 f d i / d t - ( a / s ) i - ( a ) i r r m i = 6 . 0 a i = 1 2 a i = 2 4 a f f f v = 2 0 0 v t = 1 2 5 c t = 2 5 c r j j
c-424 CPV363MM t 1 i c v c e t 1 t 2 9 0 % i c 1 0 % v c e t d ( o f f ) t f i c 5 % i c t 1 + 5 s v c e i c d t 9 0 % v g e + v g e e o f f = fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f s a m e t y p e d e v i c e a s d . u . t . d . u . t . 4 3 0 f 8 0 % o f v c e fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f v c e i e d t t 2 t 1 5 % v c e i c i p k v c c 1 0 % i c v c e t 1 t 2 d u t v o l t a g e a n d c u r r e n t g a t e v o l t a g e d . u . t . + v g 1 0 % + v g 9 0 % i c t r t d ( o n ) d i o d e r e v e r s e r e c o v e r y e n e r g y t x e o n = e r e c = t 4 t 3 v d i d d t t 4 t 3 d i o d e r e c o v e r y w a v e f o r m s i c v p k 1 0 % v c c i r r 1 0 % i r r v c c t r r q r r = t r r t x i d d t fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr refer to section d for the following: appendix d: section d - page d-6 fig. 18e - macro waveforms for test circuit of fig. 18a fig. 19 - clamped inductive load test circuit fig. 20 - pulsed collector current test circuit package outline 5 - ims-2 package (13 pins) section d - page d-14


▲Up To Search▲   

 
Price & Availability of CPV363MM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X